翻訳と辞書 |
Adjustment computations : ウィキペディア英語版 | Least squares adjustment Least squares adjustment is a model for the solution of an overdetermined system of equations based on the principle of least squares of observation residuals. It is used extensively in the disciplines of surveying, geodesy, and photogrammetry—the field of geomatics, collectively. ==Formulation== There are three forms of least squares adjustment: ''parametric'', ''conditional'', and ''combined''. In parametric adjustment, one can find an observation equation ''h(X)=Y'' relating observations ''Y'' explicitly in terms of parameters ''X'' (leading to the A-model below). In conditional adjustment, there exists a condition equation ''g(Y)=0'' involving only observations ''Y'' (leading to the B-model below) — with no parameters ''X'' at all. Finally, in a combined adjustment, both parameters ''X'' and observations ''Y'' are involved implicitly in a mixed-model equation ''f(X,Y)=0''. Clearly, parametric and conditional adjustments correspond to the more general combined case when ''f(X,Y)=h(X)-Y'' and ''f(X,Y)=g(Y)'', respectively. Yet the special cases warrant simpler solutions, as detailed below. Often in the literature, ''Y'' may be denoted ''L''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Least squares adjustment」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|